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1 Censored Likelihood Model

Let Yijs and xijs be the intensity and a vector of covariates, respectively, for protein i, peptide j,
and sample s, i = 1, 2, . . . ,M , j = 1, 2, . . . ,mi, s = 1, 2, . . . , n. We assume the linear model Yijs =
xijs

′βi + εijs, where εijs ∼ N(0, σij), and the ε variables are mutually independent. Note that,
with an appropriate choice of the model matrix composed of the xijs, this model parameterization
is equivalent to the ANOVA model formulation used in equation (1) of the main paper:

Yijks = PROTi + PEPij + GRPik + εijks, (1)

for protein i, peptide j, comparison group k, and replicate s.

Let Uijs be an indicator of whether a random (“completely at random” in statistical parlance)
mechanism causes observation {ijs} to be missing (1 if missing, 0 otherwise). Let P (Uijs = 1) = πs,
and assume the U and Y variables are mutually independent. Let Wijs be the overall missingness
indicator, equal to 0 if and only if Uijs = 0 and Yijs > cij , with cij an unkown censoring point for
peptide j of protein i. As described in the main paper,

P (Wijs = 1) = πs + (1− πs)Φ
(
ζijs

)
, (2)

where δij = 1/σij , ζijs = δij

(
cij − xijs

′βi

)
, Φ(·) is the CDF of the standard normal distribution:

Φ(x) =
∫ x
−∞ φ(t)dt, and φ(·) is the standard normal pdf. We would like to estimate the unknown

parameters θ = (π, c,β, δ) by maximizing the resulting log-likelihood for each protein:

mi∑
j=1

n∑
s=1

{
(1−Wijs)

[
log δij −

1
2
δ2
ij

(
yijs − xijs

′βi

)2]+ Wijs log
[
πs + (1− πs)Φ

(
ζijs

)]}
.

1.1 Estimation

1.1.1 Censoring cutoffs c

The likelihood is increasing in the cij . However, there is a natural upper bound for each cij in that
any observed yijs had to satisfy yijs > cij . Thus, the MLE’s are ĉij = min{yijs : i = s, . . . , n}.

1.1.2 Random missingness parameters π

Preliminary results suggest that the MLEs for the πs are poor estimates. We will consider a simple
alternative estimator, then treat it as known when estimating the other parameters. Figure 2
in the main document shows missingness proportions versus observed means for peptides for one
sample of the diabetes dataset. Assuming that some of the peptides have intensities that are high
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enough to prevent censoring, the right hand side of the figure tells us about πs. In particular, we
can estimate πs as the verticle offset from zero at the right side of the figure. To estimate the
systematic trend of the figure, we fit a natural cubic spline with 5 degrees of freedom. Splines
allow for flexible parameterization of arbitrary, nonlinear, functions, and natural cubic splines have
some nice theoretical properties. We estimate πs as the fitted value of the curve at the maximum
observed sample mean.

1.1.3 Remaining parameters θ0 = (β, δ)

MLE’s for the remaining parameters must be found by numerically maximizing the log-likelihood
function. Let

Ψs(x) =
(1− πs)φ(x)

πs + (1− πs)Φ(x)
,

and note that Ψ′
s(x) = −Ψs(x)[x + Ψs(x)]. Generic numerical optimization algorithms require just

the first and second derivatives of the log-likelihood, which we can now write as

∂li
∂δij

=
n∑

s=1

{
1
δij

[
(1−Wijs)

(
1− δ2

ij

(
yijs − xijs

′βi

)2)+ WijsζijsΨs

(
ζijs

)]}
∂li
∂βi

=
mi∑
j=1

n∑
s=1

{
δij

[
(1−Wijs)δij

(
yijs − xijs

′βi

)
−WijsΨs

(
ζijs

)]
xijs

}
∂2li
∂δ2

ij

=
n∑

s=1

{
1
δ2
ij

[
−(1−Wijs)

(
1 + δ2

ij

(
yijs − xijs

′βi

)2)+ Wijsζ
2
ijsΨ

′
s

(
ζijs

)]}
∂2li

∂δij∂δij′
= 0, j 6= j′

∂2li
∂βi∂βi

′ =
mi∑
j=1

n∑
s=1

{
δ2
ij

[
−(1−Wijs) + WijsΨ′

s

(
ζijs

)](
xijsxijs

′)}
∂2li

∂βi∂δij
=

n∑
s=1

{[
2(1−Wijs)δij

(
yijs − xijs

′βi

)
−Wijs

(
Ψs

(
ζijs

)
+ ζijsΨ′

s

(
ζijs

))]
xijs

}
.

1.2 Information Content

Maximum likelihood theory defines information content using second derivative matrices of the
log-likelihood. The observed information is just the matrix of negative second derivatives derived
above:

I0(θi) =
(

I0(δi) I0(βi, δi)
I ′0(βi, δi) I0(βi)

)
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where

I0(δi) = −∂2li
∂δ2

ij

I0(βi) = − ∂2li
∂βi∂βi

′

I0(βi, δi) = − ∂2li
∂βi∂δij

.

The expected information matrix takes the expectation of the above values with respect to the
random vectors (Yijs,Wijs) and can be derived as

I(θi) =
(

I(δi) I(βi, δi)
I ′(βi, δi) I(βi)

)
where

I(δij) = −E
(

∂2li
∂δ2

ij

)
=

n∑
s=1

1
δ2
ij

[
2(1− κijs)− ζ2

ijsΨs(ζijs)κijs

]

I(βi) = −E
(

∂2li
∂βi∂βi

′

)
=

mi∑
j=1

n∑
s=1

δ2
ij

[
1− κijs

(
1 + Ψ′

s(ζijs)
)](

xijsx
′
ijs

)
I(βi, δij) = −E

(
∂2li

∂βi∂δij

)
=

n∑
s=1

[
Ψs(ζijs) + ζijsΨ′

s(ζijs)
]
κijsxijs,

and where κijs = πs + (1− πs)φ(ζijs).

The diagonal entries of the inverse expected information matrix are approximately equal to the
square of relevant model parameter standard errors, with large sample sizes. However, in the
presence of missing values, the observed information is arguably more appropriate as a measure
of information content. This is because the observed information takes into account the number
of missing values in the observed dataset, whereas the expected information does not. For more
details, see Little and Rubin (2002).

1.3 A Specific Example

Consider a protein with mi peptides in the diabetes data, where there are 10 samples each for
diabetics and healthy controls. Let Yijks be the log peak intensity for the jth peptide of protein i in
sample s of group k, i = 1, 2, . . . ,M , j = 1, 2, . . . ,mi, k = 1, 2, s = 1, 2, . . . , 10. Based on model (1),
µi is the overall mean for protein i, PEPij is the mean offset for the jth peptide in protein i, and
GRPik is the effect of diabetes on mean protein expression. The following sum-to-zero constraints
apply:

∑mi
j=1 PEPij = 0 and

∑2
k=1 GRPik = 0. Note that we assume a common group effect for

each peptide in the same protein.

In matrix form, the model is
Y i = Xiβi + εi,
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where, for example, the model matrix for a protein with 3 peptides is

Xi =



1 1 0 1
1 1 0 −1
1 0 1 1
1 0 1 −1
1 −1 −1 1
1 −1 −1 −1

 ,

where each component of the matrix is a vector of length 10. There are therefore 3 + 4 = 7
parameters to estimate numerically: δi = (δi1, δi2, δi3)′ and βi = (µi,PEPi1,PEPi2,GRPi1)′. The
first derivative of the log-likelihood is a vector of length 7, equal to

∂li
∂θ0

=
(

∂li
∂δi

,
∂li
∂βi

)′
=
(

∂li
∂δi1

,
∂li
∂δi2

,
∂li
∂δi3

,
∂li
∂µi

,
∂li

∂PEPi1
,

∂li
∂PEPi2

,
∂li

∂GRPi1

)′
.

The second derivative is a 7× 7 matrix equal to

∂2li
∂θ0∂θ0

′ =

(
∂2li

∂δi∂δi
′

∂2li
∂δi∂βi

′

∂2li
∂βi∂δi

′
∂2li

∂βi∂βi
′

)
,

where ∂2li
∂δi∂δi

′ is the 3× 3 diagonal matrix with jth diagonal entry equal to ∂2li
∂δij

, ∂2li
∂δi∂βi

′ is the 3× 4

matrix with jth row equal to ∂2li
∂βi∂δij

, and ∂2li
∂βi∂βi

′ is a 4× 4 matrix.

2 Preprocessing

2.1 Rough Parameter Estimates

In both the filtering and imputation steps outlined below, we require rough estimates of the model
parameters for making decisions on information content and generating random realizations under
the estimated probability model. We do not employ the full numerical estimation routine of the
censored likelihood for this purpose for several reasons: (1) Rough estimates are sufficient for the
filtering and imputation steps, (2) The full censored likelihood model may not be identifiable if there
are too many missing values, (3) Even if the full censored likelihood model is identifiable, with very
little information content, the numerical algorithm may fail, and (4) The numerical algorithm is
relatively slow.

Reviewing our model statement, our assumptions are: (1) there is a common group difference for
each peptide from the same protein, (2) for any one peptide, the variances are equal in the difference
comparison groups, although this variance may change from peptide to peptide, and (3) peak
intensities for a peptide are Normally distributed. Consider a hypothetical protein with multiple
peptides. If peptide j, say, is complete, with no missing values in any comparison group, we can
use simple averaging of this peptide to obtain unbiased estimates of the overall peptide-level mean
PROTi + PEPij and the corresponding group differences GRPik from model (1), k = 1, 2, . . . ,K.
Similarly, we can obtain an unbiased estimate of δij from the sample variances of the residuals.
Since we assume common group differences for each peptide, the ˆGRPik estimates can be applied to
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all sibling peptides. For example, suppose peptide j′ is complete in at least one of the comparison
groups but also missing values in at least one comparison group. An unbiased estimate of the
peptide-level mean for a group k, PROTi + PEPij′ + GRPik, in which the peptide is complete can
be obtained by simple averaging as before. Similarly, we can estimate δij′ from the sample variance
of the resulting residuals. We can then estimate all remaining group-specific means for peptide j′

by shifting this estimate according to the ˆGRPik.

These parameter estimates are used in the filtering and imputation steps as described below.

2.2 Filtering

Our interest is in the protein-level group difference estimates, contained in the vector-valued pa-
rameter βi. Let βi,GRP be the subset of βi corresponding to these group difference estimates; this
is just the result of removing the protein-level overall mean and peptide effect estimates from βi.
Let I0(β̂i,GRP) be the result of plugging β̂i,GRP into the corresponding sub-block of I(βi). We then
quantify the information content Ci for protein i as the determinant of this matrix:

Ci = |I0(β̂i,GRP)|.

Larger values of Ci correspond to smaller standard errors for the protein-level group effects and
hence greater information content. Zero determinants correspond to non-identifiable models, as
happens for example when no observations occur at all in one or more comparison groups. With
this measure of information content, we can evaluate a protein, as well as any combination of
its peptides, in terms of its ability to provide useful information about the protein-level group
differences of interest. Proteins are first filtered if no combination of their peptides results in an
identifiable model. For each protein that remains, a greedy search routine is employed to find
the minimal subset of peptides required to achieve 90% of the total information content present
for the protein. Specifically, the first peptide is chosen to individually maximize Ci. Then, each
remaining peptide is paired with the already-selected peptide, and the second peptide is chosen to
maximize Ci in conjunction with the already-selected peptide. This is continued until 90% of the
total information content, computed using all peptides for the protein, is attained.

2.3 Imputation

Imputation is carried out by simply generating missing values as random draws from our estimated
model. Each missing value is chosen to have been censored with probability

P (Yijs < ĉij |Wijs = 1) =
Φ(ζ̂ijs)

π̂s + (1− π̂s)Φ
(
ζ̂ijs

) ,
where the denominator comes from the overall missingness probability in equation (2). If censored,
the missing value is imputed with a random draw from the relevant Normal distribution, truncated
at ĉij . If not censored, the missing value is imputed with a random draw from the same Normal
distribution, but with not truncation at the estimated censoring point. When there are no complete
peptides for a protein, we randomly select the peptide that has the fewest missing values and use
similar ad-hoc rules to make decisions when fleshing out the sibling peptides.
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The above routine is an example of single imputation. Single imputation is known to suffer from
overfitting, in that the uncertainty associated with using the data to estimate a model has not been
taken into account. This means that we will end up underestimating standard errors of parameters
as well as p-values. To address this, we could implement a multiple imputation routine. In multiple
imputation, the above procedure would be repeated several times, each time with different random
numbers generated from the model distributions. These repeated samples can be used to estimate
the variability due to using the observed data for imputation.

Instead of multiple imputation, we directly adjust the p-values from our single imputation routine to
appropriately reflect all sources of variability. This amounts to inflating the nominal p-values com-
puted on the imputed data. The choice of how much to inflate the p-values is done automatically,
based on the following argument. The p-values for null proteins should be uniformly distributed
between 0 and 1 (Lehmann [1997]). Furthermore, in high-throughput significance testing applica-
tions, the overall distribution of p-values can be viewed as a mixture of this uniform distribution
and a right-skewed distribution for the alternative features (genes, proteins, etc.) (Efron et al.
[2001], Storey [2002]). Overfitting will generally result in underestimated p-values, causing among
other things the null p-value distribution to be right-skewed and non-uniform (Dabney and Storey
[2006]). If we knew how much the null p-value distribution has been skewed, we could just apply
an appropriate scale factor, κ, to all p-values. That is, we could replace pi, the p-value for the ith
protein, with pi×κ (restricted to not exceed 1). Since we can not separate the null and alternative
p-values in practice, we can only hope to estimate κ. If we underestimate κ, we will continue to
have underestimated p-values. If we overestimate κ, we will have left-skewed null p-values, with
a peak on the right side of the overall p-value distribution. Based on this last observation, we
consider a range of scale factors and choose the largest one that does not cause a peak on the right
side of the overall p-value distribution. Specifically, we let κ range from 1 to 10, and use each value
in turn as the scale factor for inflating the p-values. We then fit a least-square regression line to
the resulting p-value distributions, over the range [0.7, 1.0] (an arbitrary definition for the “right
side” of the p-value distribution), and record its slope. A slope greater than one is indicative of
our having inflated too much. We then choose the largest value of κ in our range of possible values
that does not have a positive slope to this regression curve, as measured by a one-sided hypothesis
test at level 0.05.

This routine produces approximately uniformly-distributed null p-values, as measured by Kolmogorov-
Smirnoff tests, in the simulation studies reported in the main paper.

3 Simulation Study

The simulation data mimicked the diabetes data considered in the main manuscript. There were
174 proteins, and each simulated protein had the same number of peptides as in the diabetes data.
The first 90 proteins were made to be not differentially expressed (with group differences terms set
to zero), and the remaining 84 were differentially expressed (with group differences randomly drawn
from the sequence {−1.1,−1, . . . ,−0.6, 0.6, 0.7, . . . , 1.1}). The random missingness πs parameters
were set to 5%, and the censoring thresholds were selected such that a total of 40% of all mea-
surements were missing. Protein means were randomly generated from the N(20, 0.2) distribution
(Normal distribution with mean 20 and standard deviation 0.2). Peptide effects were randomly
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generated from the N(0, 0.6) distribution. Residual standard deviations were randomly generated
from the Uniform distribution on the interval [0.6, 1.1]. These steps were done one time, creating
all the parameters to be used repeatedly in five simulations. In each simulation, residual error was
randomly generated and added to the model determined by the above parameters. Missingness was
induced by censoring the lowest intensities and randomly selecting entries regardless of intensity to
be missing. For each method, we computed a set of (1-specificity, sensitivity) values corresponding
to a sequence of p-value cutoffs. We then averaged the values for the same p-value cutoff across
simulations. These were plotted in the ROC curve figure in the main manuscript. All remaining
simulations were carried out similarly and summarized in Table 1 in the main manuscript.

4 Analysis of Mutant Virulence Data

4.1 Model

Let Yijks be the intensity for protein i, peptide j, mutant group k, and replicate s, i = 1, 2, . . . ,M ,
j = 1, 2, . . . ,mi, k = 1, 2, . . . ,K, s = 1, 2, . . . , n. Assume the model:

Yijks = WTi + PEPij + MUTik + εijks, (3)

where WTi is the protein-level mean for the WT group, the PEPij are the peptide effects (assumed
to be constant across comparison groups), and the MUTik are the mutant effects. After filtering,
we have 13 mutants, all of which need to be compared to WT. As usual, we require the sum-to-zero
constraints on the PEP terms:

∑mi
j=1 PEPij = 0.

In matrix form, the model is Y i = Xiβi + εi. The covariance matrix of εi is diagonal but with
different variance parameters for each peptide. That is, Var(εi) = Σi, where

Σi = BlockDiagonal(σ2
i1I45×45, σ2

i2I45×45, . . . , σ2
imi

I45×45),

where I45×45 is the 45 × 45 identity matrix. The “45” comes from the fact that we have 6 WT
replicates and 3 replicates each for the WT and 13 mutant groups.

4.2 Estimation

Given the model matrix, we can estimate the model parameters using standard least squares

β̂i = (X ′
iXi)−1X ′

iY i.

Note that, since each peptide is allowed to have its own error variance, we would ideally do some-
thing more like a weighted regression, using an estimate of Σi. The above estimates are still
unbiased, though. To estimate their standard errors, we can use the estimated covariance matrix
of β̂i:

Var(β̂i) = (X ′
iXi)−1X ′

iΣ̂iXi(X ′
iXi)−1,

where
Σ̂i = BlockDiagonal(σ̂2

i1I45×45, σ̂2
i2I45×45, . . . , σ̂2

imi
I45×45),
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and the σ̂2
ij are computed from the peptide-specific model residuals:

σ̂2
ij =

∑14
k=1

∑3
s=1(yijks − ŷijks)2

45− 1− 14/45
,

j = 1, 2, . . . ,mi.

4.3 Inference

The interest in this experiment is in finding proteins that differ from WT in the majority of the
mutants. That is, we would ideally like to find those proteins for which there is a significant
difference in protein-level intensity for most of mutant 1, mutant 2, . . ., mutant 13. For protein i,
we compute the mutant-specific test statistics:

Tik =
ˆMUTik

ˆs.e.( ˆMUTik)
,

k = 1, 2, . . . , 13, and then use

Ti = # {|Tik| ≥ 2 : k = 1, 2, . . . , 13} ,

the number of mutant-specific test statistics exceeding 2 in absolute value, as the protein-level test
statistic.

To put a p-value on this statistic, we construct bootstrap samples from the null distribution as
follows:

1. Compute the residuals from the fitted model in equation (1): eijks.

2. For each of B = 500 bootstrap iterations:

(a) Take a random sample with replacement from the residuals: eb
ijks.

(b) Add the bootstrapped residuals to the estimated null model (Ŷijks = ˆPROi + ˆPEPij) to
get a bootstrapped sample under the null: yb

ijks.

(c) Compute the test statistic using the bootstrapped sample and the full model in equation
(1) to obtain a bootstrapped null statistic: T b

i .

3. Compute a p-value as the proportion of bootstrap statistics that exceed the observed statistic:
pi = #

{
T b

i > Ti

}
/B.
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